Eutrophication Induction Via N/P and P/N Ratios Under Controlled Conditions—Effects of Temperature and Water Sources

Author:

Diatta JeanORCID,Waraczewska Zyta,Grzebisz Witold,Niewiadomska Alicja,Tatuśko-Krygier Natalia

Abstract

AbstractThe current research outlines the course of eutrophication processes emerging when some critical physical and chemical factors interact altogether. For this purpose, investigations were carried out, where nitrogen [N as (NH4)2HPO4 and KNO3] and phosphorus [P as (NH4)2HPO4] were added to three different water sources (double distilled water, DDW; tap water, TW; and lacustrine water, LW) and the solutions were incubated at two distinct temperatures (17 and 23 °C). Treatments were kept in 1 dm3 glass jars and the incubation time lasted 7 weeks. The eutrophication process emerged only at 23 °C and was stronger for the lacustrine water (LW). In the case of DDW treatments, this process was observed at N/P = 5.1 and even at 60.0, whereas for the TW, no algal blooming was detected (N/P ratio 17.7–640.0). The lacustrine water (LW) outlined patterns with strong eutrophication at N/P = 4.40, but also at ratios 20.9–71.1. Algal blooming significantly intensified according to LW > TW > DDW but was reversely dependent on the P/N ratios, which followed the range DDW (P/N, 1.6–3.78) > TW (P/N, 0.050–0.100) > LW (P/N, 0.016–0.023). At P = constant (P = 0.10 mg dm−3) and the N inputs varying from 0.010 to 2.0 mg dm−3, it appeared that the higher the N concentrations, the more intensive the eutrophication process. For N/P ratios, phosphorus regulated for most of the intensity of the process, whereas in the case of P/N, the role of N and P was interchangeable. The main finding of the research is that nitrogen revealed in many cases to be a powerful eutrophication-regulating factor than did phosphorus.

Funder

Poznan University of Life Sciences

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Water Science and Technology,Ecological Modelling,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3