Preliminary Laboratory Investigations into Zinc and Copper Adsorption by Crushed Bivalve Shells

Author:

Thind Jaspreet,McDougall Daniel R.ORCID,Jones Mark I.,Jeffs Andrew G.

Abstract

AbstractCrushed shells from three bivalve mollusc species (mussel, oyster and scallop) in two particle size ranges (63–150 μm and 710–1180 μm) were tested for their ability to remove dissolved copper and zinc ions from synthetic stormwater in a column. For comparison, zeolite (1–2 mm), which is commonly used for heavy metal ion capture, was also assessed. All shell types of both particle sizes were effective in removing zinc from solution with 97–100% removal efficiency which was similar to the removal efficiency by zeolite (97.6%). The removal of copper was most efficiently achieved with oyster shell with a particle size range of 710–1180 μm (83.6%), which was similar to the removal efficiency by zeolite (83.4%). Brunauear-Emmett-Teller (BET) surface area measurements showed significant decreases in the surface area of the shells after exposure to synthetic stormwater due to adsorption of heavy metals, visually confirmed by observation of a fine layer of metal precipitate adsorbed to the shell particle surfaces using Scanning Electron Microscopy (SEM). Overall, the results indicate that crushed bivalve shells have excellent potential for the removal of dissolved zinc and copper from stormwater and should be tested in more complex stormwater studies. This work has significant implications for stormwater infrastructure design using a local, cheap and readily accessible waste material.

Funder

University of Auckland

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Water Science and Technology,Ecological Modeling,Environmental Chemistry,Environmental Engineering

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3