Laboratory Flushing Tests of Dissolved Contaminants in Heterogeneous Porous Media with Low-Conductivity Zones

Author:

Kurasawa TomokiORCID,Takahashi Yoshitaro,Suzuki MarikoORCID,Inoue KazuyaORCID

Abstract

Abstract The retention of contaminants within low-conductivity regions such as clay lenses and aquitards can greatly affect groundwater remediation processes. The aim of this study was to experimentally investigate the effects of the geometry of low-conductivity zones, conductivity contrast, and flow regime on solute flushing. We conducted a series of flushing tests in cylindrical models containing a cylindrical low-conductivity zone (i.e., low-K zone) embedded in a highly conductive medium (i.e., high-K zone). Seven models comprising four high-conductivity-contrast (SL, SS, LL, and LS), one medium-contrast (LLM), one low-contrast (LLL), and one homogeneous (H) models were considered. Experiments were conducted at two flow rates (Q = 0.6 and 26 cm3/min) for each heterogeneous model (SL, SS, LL, LS, LLM, and LLL) to compare the flushing processes in different flow regimes. First, we verified the validity of our experiments by comparing the results of the H model from an analytical solution with our experiment. The results of the high-contrast models showed that for a diffusion-dominated regime (Q = 0.6 cm3/min), the pore volume injected (PVI) required to flush out solute mass was much smaller than that in an advection-dominated regime (Q = 26 cm3/min). To evaluate the pore volumes required to flush out solutes for the four high-contrast models, we introduced a parameter P0.01, which is defined as the PVI needed for the relative concentration to become 0.01 at the middle of the low-K zone. P0.01 decreases with increasing the specific surface area of the low-K zone for diffusion-dominated regimes, while it increases with increasing the length of the low-K zone for advection-dominated regimes. We also determined the importance of the effect of K contrast on solute retention by comparing the results of three different models of K contrast (LL, LLM, and LLL).

Funder

Japan Society for the Promotion of Science

Kobe University

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Water Science and Technology,Ecological Modeling,Environmental Chemistry,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3