Sewage Derived Microplastic and Anthropogenic Fibre Retention by Integrated Constructed Wetlands

Author:

Warren Richard J.,Cooper Richard J.,Mayes Andrew G.,Nolte Stefanie,Hiscock Kevin M.,Tosney Jonah

Abstract

AbstractHigh loads of microplastics and anthropogenic fibres can be discharged from wastewater treatment plants (WWTPs) into surface water bodies. Integrated Constructed Wetlands (ICWs) are potentially well suited to provide a cost-effective mitigation solution at small WWTPs where conventional treatment is prohibitively expensive. This study aimed to assess the microplastic and anthropogenic fibre retention efficiency of two ICWs (Northrepps and Ingoldisthorpe) in Norfolk (UK) over a 12-month period (2022–2023). Analysing a total of 54 water and 23 sediment samples, the findings revealed that Northrepps ICW received on average 349,920 (± 763,776) anthropogenic fibres day−1, with a retention rate of 99.3%. No seasonal variation was observed in retention efficiency. Ingoldisthorpe ICW intermittently received anthropogenic fibres in low concentrations, with an average of 9504 (± 19,872) day−1 and a retention rate of 100%. Microplastics and anthropogenic fibres were prevalent in sediment samples of the first cell of Northrepps ICW, averaging 10,090 items kg−1 dry sediment, while none were found at concentrations above the limit of detection in the second or third cell. Of the 369 fibres analysed by ATR-FTIR, 55% were plastic (dominated by polyester). Of the 140 suspected microplastic fragments analysed by ATR-FTIR, 73% were confidently identified as plastic (mostly polystyrene, polyethylene, or polypropylene). This study demonstrates how ICWs can effectively retain sewage effluent derived microplastics and anthropogenic fibres. However, the accumulation of plastic waste in ICWs may complicate long term management and their cost-effectiveness.

Funder

University of East Anglia

Norfolk Rivers Trust

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3