The Impact of Sorbent Amendments for Mercury Remediation on the Viability of Soil Microorganisms

Author:

Ogbudu Jeffrey,Egbo Timothy E.,Johs Alexander,Sahu Rajnish,Abdelmageed Yazeed,Ayariga Joseph,Robertson Boakai K.ORCID

Abstract

AbstractMercury (Hg) remediation across contaminated environments in the United States is an ongoing project. As part of the Hg cleanup strategy at East Fork Poplar Creek (EFPC), located in Oak Ridge, TN, the deployment of sorbents is considered. However, the impact of sorbents on soil microorganisms is poorly understood. In this study, we investigated the effect of sorbents on soil microorganism viability and biofilm formation to assess soil health during sorbent application for Hg remediation. We specifically investigated the effect of two engineered sorbents, Organoclay PM-199 and Organoclay MRM (which are manufactured from clay minerals formulated for various remediation applications), on two gram-negative organisms (Serratia marcescens and Burkholderia thailandensis) isolated from the Hg-contaminated EFPC bank soil. Pure cultures of S. marcescens or B. thailandensis were amended with 5% (w/v) and 25% (w/v) PM-199 and MRM, respectively, for 9 days. The samples were harvested, and bacterial cell viability was determined using a BacLight staining kit. Results showed that the growth of sorbent-amended S. marcescens was inhibited in contrast to that of unamended control. Furthermore, biochemical assays were used to analyze bacterial biofilm formation and integral biofilm components. Our results suggest that biofilm formation by sorbent-amended S. marcescens was negatively affected. In contrast, B. thailandensis amended with low concentrations of MRM showed enhanced growth and notable differences in biofilm morphology. These results suggest that the use of organoclay PM-199 and MRM at higher concentrations in field studies may hinder the growth of specific soil microorganisms.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3