The Effect of Filtration with Natural Esker Sand on the Removal of Organic Carbon and Suspended Solids from the Effluent of Experimental Recirculating Aquaculture Systems

Author:

Lindroos Antti-Jussi,Lindholm-Lehto Petra,Pulkkinen Jani,Kiuru Tapio,Vielma Jouni

Abstract

AbstractWe studied the effect of sand filtration with natural esker material on the removal of total organic carbon (TOC), total suspended solids (TSS), and turbidity from the effluent of an experimental recirculating aquaculture system (RAS) farm. Separate experiments were performed with the same esker sand: (1) a soil column experiment in 2017 where the effluent (mean TOC 8.14 mg L−1) was percolated vertically through a 50-cm-thick sand column with the infiltration 1 m day−1; (2) a sand filtration experiment with water-saturated conditions in 2018 where the effluent from the woodchip denitrification (mean TOC 26.84 mg L−1) was infiltrated through a sand layer with the retention time of 1.2 days. In experiment 2, infiltration of 25 L day−1 through a 31-cm sand layer and 40 L day−1 through a 50-cm sand layer were studied. Both experiments were performed in association with rainbow trout (Oncorhynchus mykiss) grow-out trials. In sand filtration with vertical water flow through a soil column, the removal of TSS was 40%, while of TOC 6%, partly due to the small thickness of the soil column and coarse sand material. In water-saturated conditions, mean removal of TOC (3 mg L−1 1.2 day−1), TSS (1.2 mg L−1 1.2 day−1), and turbidity (0.4 FTU 1.2 day−1) reached 11% (TOC), 18% (TSS), and 15% (turbidity), even with the retention time of only 1.2 days. The removal of TOC in water-saturated conditions correlated with the removal of TSS and turbidity.

Funder

Natural Resources Institute Finland

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Water Science and Technology,Ecological Modeling,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3