Author:
Duan Xiaonan,Wang Xiaoke,Ouyang Zhiyun
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Water Science and Technology,Ecological Modeling,Environmental Chemistry,Environmental Engineering
Reference29 articles.
1. Armstrong, J., Armstrong, W., Beckett, P. M., Halder, J. E., Lythe, S., Holt, R., et al. (1996). Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australis (Cav.) Trin. ex Steud. Aquatic Botany, 54, 177–198. doi: 10.1016/0304-3770(96)01044-3 .
2. Aulakh, M. S., Wassmann, R., & Rennemberg, H. (2001). CH4 emissions from rice fields-quantification, mechanisms, role of management, and mitigation options. Advances in Agronomy, 70, 193–260. doi: 10.1016/S0065-2113(01)70006-5 .
3. Beckett, P. M., Armstrong, W., & Armstrong, J. (2001). Mathematical modeling of CH4 transport by Phragmites: the potential for diffusion within the roots and rhizosphere. Aquatic Botany, 69, 293–312. doi: 10.1016/S0304-3770(01)00144-9 .
4. Brix, H., Sorrell, B. K., & Schierup, H. (1996). Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquatic Botany, 54, 151–163. doi: 10.1016/0304-3770(96)01042-X .
5. Cao, Y. Y., Xu, J. B., & Zhu, Q. S. (2005). Effect of rice plant status and difference varieties on CH4 transport rate. Acta Agriculturae Boreali-Sinica, 20, 105–109 in Chinese.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献