Mitigating adversarial evasion attacks by deep active learning for medical image classification

Author:

Ahmed Usman,Lin Jerry Chun-WeiORCID,Srivastava Gautam

Abstract

AbstractIn the Internet of Medical Things (IoMT), collaboration among institutes can help complex medical and clinical analysis of disease. Deep neural networks (DNN) require training models on large, diverse patients to achieve expert clinician-level performance. Clinical studies do not contain diverse patient populations for analysis due to limited availability and scale. DNN models trained on limited datasets are thereby constraining their clinical performance upon deployment at a new hospital. Therefore, there is significant value in increasing the availability of diverse training data. This research proposes institutional data collaboration alongside an adversarial evasion method to keep the data secure. The model uses a federated learning approach to share model weights and gradients. The local model first studies the unlabeled samples classifying them as adversarial or normal. The method then uses a centroid-based clustering technique to cluster the sample images. After that, the model predicts the output of the selected images, and active learning methods are implemented to choose the sub-sample of the human annotation task. The expert within the domain takes the input and confidence score and validates the samples for the model’s training. The model re-trains on the new samples and sends the updated weights across the network for collaboration purposes. We use the InceptionV3 and VGG16 model under fabricated inputs for simulating Fast Gradient Signed Method (FGSM) attacks. The model was able to evade attacks and achieve a high accuracy rating of 95%.

Funder

Western Norway University Of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Adversarial Attacks: Developing Quantum FGSM Algorithm;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

2. Machine learning security and privacy: a review of threats and countermeasures;EURASIP Journal on Information Security;2024-04-23

3. Data reweighting net for web fine-grained image classification;Multimedia Tools and Applications;2024-03-02

4. AIPA: An Adversarial Imperceptible Patch Attack on Medical Datasets and its Interpretability;Computers & Security;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3