Efficacy assessment of methylcellulose-based thermoresponsive hydrogels loaded with gallium acetylacetonate in osteoclastic bone resorption

Author:

Ghanta Pratyusha,Winschel Timothy,Hessel Evin,Oyewumi Oluyinka,Czech Tori,Oyewumi Moses O.ORCID

Abstract

Abstract Homeostatic imbalance involving progressive stimulation of osteoclast (OC) differentiation and function will lead to an increased risk of fragility fractures. In this regard, we investigated gallium acetylacetonate (GaAcAc) as a possible treatment for osteoclastic bone resorption. Further, the extent to which suitable delivery systems can enhance the therapeutic potential of GaAcAc was evaluated. GaAcAc solution (10–50 µg/mL) suppressed OC differentiation using murine monocytic RAW 264.7 or hematopoietic stem cells. Methylcellulose-based hydrogels were fabricated and characterized based on biocompatibility with bone cells, GaAcAc loading, and thermoresponsive behavior using storage (G′) and loss (G″) moduli parameters. Compared to GaAcAc solution, hydrogels loaded with GaAcAc (GaMH) were more effective in suppressing OC differentiation and function. The number and extent of bone resorption pits from ex vivo studies were markedly reduced with GaMH treatment. Mechanistic assessment of GaMH efficacy showed superiority, compared to GaAcAc solution, in downregulating the expression of key markers involved in mediating OC differentiation (such as NFAT2, cFos, TRAF6, and TRAP) as well as in bone resorption by OCs (cathepsin K or CTSK). Additional studies (in vitro and in vivo) suggested that the performance of GaMH could be ascribed to controlled release of GaAcAc and the ability to achieve prolonged bio-retention after injection in BALB/c mice, which plausibly maximized the therapeutic impact of GaAcAc. Overall, the work demonstrated, for the first time, the therapeutic efficacy of GaAcAc and the therapeutic potential of GaMH delivery systems in osteoclastic bone resorption. Graphical Abstract "Image missing"

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3