Facile methodology of nanoemulsion preparation using oily polymer for the delivery of poorly soluble drugs

Author:

Wik Johanna,Bansal Kuldeep K.,Assmuth Tatu,Rosling Ari,Rosenholm Jessica M.ORCID

Abstract

AbstractAqueous solubility of an active pharmaceutical ingredient (API) is a determining factor that has a direct impact on formulation strategies and overall bioavailability. Fabrication of nanoemulsions of poorly soluble drugs is one of the widely utilized approaches to overcome this problem. However, thermodynamic instability and tedious manufacturing processes of nanoemulsions limit their clinical translation. Therefore, this study was focused on circumventing the abovementioned hurdles by utilizing the polymer as an oil phase, instead of conventional oils. The nanoemulsion was prepared via a facile low-energy nanoprecipitation method using renewable poly(δ-decalactone) (PDL), as an oil phase and Pluronic F-68 as surfactant. The prepared nanoemulsions were characterized in terms of size, drug encapsulation efficiency, stability, and toxicity. Five different hydrophobic drugs were utilized to evaluate the drug delivery capability of the PDL nanoemulsion. The prepared nanoemulsions with sizes less than 200 nm were capable to enhance the aqueous solubility of the drugs by 3 to 10 times compared with the well-established Pluronic F-68 micelles. No phase separation or significant changes in size and drug content was observed with PDL nanoemulsions after high-speed centrifugation and 3 months of storage at two different temperatures (20 °C and 50 °C). PDL nanoemulsions were found to be non-heamolytic up to concentrations of 1 mg/mL, and the cell cytotoxicity studies on MDA-MB-231 and MEF cells suggest a concentration and time-dependent toxicity, where the PDL polymer itself induced no cytotoxicity. The results from this study clearly indicate that the PDL polymer has a tremendous potential to be utilized as an oil phase to prepare stable nanoemulsions via a facile methodology, ultimately favouring clinical translations.

Funder

Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3