Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs

Author:

Pignatello RosarioORCID,Corsaro Roberta,Bonaccorso Angela,Zingale Elide,Carbone Claudia,Musumeci Teresa

Abstract

Abstract The issue of poor aqueous solubility is often a great hitch in the development of liquid dosage forms for those drugs that the Biopharmaceutics Classification System (BCS) includes in classes II and IV. Among the possible technological solutions, inclusion of the drug molecule within polymeric micelles, and particularly nanomicelles, has been proposed in the last years as a valid strategy. Our attention has been recently attracted by Soluplus®, an amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer able to form small and stable nanomicelles. The aim of this study was to characterize Soluplus® nanomicelles to enhance the apparent solubility of three model APIs, categorized in BCS class II: ibuprofen (IBU), idebenone (IDE), and miconazole (MIC). Drug-loaded Soluplus® micelles with a mean size around 60–70 nm were prepared by two methods (direct dissolution or film hydration method). The prepared nanosystems were characterized in terms of mean particle size and Zeta potential, physical stability, drug solubility, and in vitro drug release. The solubility of the tested APIs was shown to increase linearly with the concentration of graft copolymer. Soluplus® can be easily submitted to membrane filtration (0.2 µm PES or PTFE membranes), showing the potential to be sterilized by this method. Freeze-drying enabled to obtain powder materials that, upon reconstitution with water, maintained the initial micelle size. Finally, viscosity studies indicated that these nanomicelles have potential applications where a bioadhesive material is advantageous, such as in topical ocular administration. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3