Regulatory aspects of a nanomaterial for imaging therapeutic cells

Author:

van der Zee Margriet,de Vries ClaudetteORCID,Masa Marc,Morales Marta,Rayo Marta,Hegger Ingrid

Abstract

AbstractThe ability to track therapeutic cells upon administration to the patient is of interest to both regulators and developers of cell therapy. The European Commission Horizon2020 project nTRACK from 2017-2022 aimed to develop a multi-modal nano-imaging agent to track therapeutic cells during development of a cell therapy. As part of this project, we investigated the regulatory pathway involved for such a product if marketed as a stand-alone product. An important regulatory hurdle appeared to be the appropriate regulatory classification of the nTRACK nano-imaging agent, as neither the definition for medicinal product nor the definition for medical device appeared to be a good fit for the purpose of the product and we were confronted with diverging views of competent authorities on the classification. As a consequence, the information requirements to fulfill before conducting a First in Human trial are not evident and can only be decided upon by closely collaborating and communicating with the relevant authorities throughout the development of the product. Moreover, standard test methods for demonstrating the quality and safety of a medicinal product or medical device are not always suitable for nanomaterials such as the nTRACK nano-imaging agent. Regulatory agility is therefore a great need to prevent delay of promising medical innovations, although regulatory guidance on these products will likely improve with more experience. In this article, we outline the lessons learnt related to the regulatory process of the nTRACK nano-imaging agent for tracking therapeutic cells and offer recommendations to both regulators and developers of similar products. Graphical Abstract

Funder

Horizon 2020 research and innovation programme

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

Reference46 articles.

1. Helfer BM, et al. Options for imaging cellular therapeutics in vivo: a multi-stakeholder perspective. Cytotherapy. 2021;23(9):757–73.

2. EMA. Reflection paper on stem cell-based medicinal products. EMA/CAT/571134/2009. 2011.

3. US-FDA. Guidance for industry: considerations for the design of early-phase clinical trials of cellular and gene therapy products, 2015. 2019.

4. Zhang R, et al. Clinical translation of gold nanoparticles. Drug Deliv Transl Res. 2023;13(2):378–85.

5. Enustun BV, Turkevich J. Coagulation of colloidal gold. J Am Chem Soc. 1963;85(21):3317–28.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3