Nanoparticle pre-treatment for enhancing the survival and activation of pulmonary macrophage transplant

Author:

Jarai Bader M.ORCID,Bomb KartikORCID,Fromen Catherine A.ORCID

Abstract

AbstractDespite recent clinical successes of chimeric antigen receptor T cell therapies in treating liquid cancers, many lingering challenges stand in the way of therapeutic translation to broader types of malignancies. Macrophages have been proposed as alternatives to T cells given macrophages’ advantages in promoting tumor infiltration, acquiring diverse antigens, and possessing the ability to continuously stimulate adaptive responses. However, the poor survival of macrophages upon transplantation in addition to transient anti-tumor phenotypical states have been major obstacles standing in the way of macrophage-based cell therapies. Given recent discoveries of nanoparticle strategies in improving macrophage survival and promoting phenotype retention, we herein report the ability to extend the survival and phenotype of macrophage transplants in murine lungs via pre-treatment with nanoparticles of varying degradation rates. Macrophages pre-treated with 100 µg/ml dose of poly(ethylene glycol) diacrylate nanoparticle formulations improve pulmonary macrophage transplant survival over untreated cells beyond 7 days, where degradable nanoparticle formulations result in over a 50% increase in retention of transplanted cell counts relative to untreated cells. Furthermore, pre-treated macrophages more efficiently retain an imposed pro-inflammatory-like polarization state following transplantation out to 7 days compared to macrophages pre-treated with a classical pro-inflammatory stimulus, interferon-gamma, where CD86 costimulatory molecule expression is greater than 150% higher in pre-treated macrophage transplants compared to untreated counterparts. These findings provide an avenue for a major improvement in the lifespan and efficacy of macrophage-based cell therapies and have broader implications to other phagocyte-based cellular therapeutics and administration routes. Graphical Abstract

Funder

National Institute of General Medical Sciences

Pharmaceutical Research and Manufacturers of America Foundation

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3