Fabrication and optimization of itraconazole-loaded zein-based nanoparticles in coated capsules as a promising colon-targeting approach pursuing opportunistic fungal infections

Author:

Adel SheryORCID,Fahmy Rania H.ORCID,Elsayed IbrahimORCID,Mohamed Magdy I.,Ibrahim Reem R.ORCID

Abstract

AbstractItraconazole (ITZ), a broad-spectrum antifungal drug, was formulated into colon-targeting system aiming to treat opportunistic colonic fungal infections that commonly infect chronic inflammatory bowel diseases (IBD) patients due to immunosuppressive therapy. Antisolvent precipitation technique was employed to formulate ITZ-loaded zein nanoparticles (ITZ-ZNPs) using various zein: drug and aqueous:organic phase ratios. Central composite face-centered design (CCFD) was used for statistical analysis and optimization. The optimized formulation was composed of 5.5:1 zein:drug ratio and 9.5:1 aqueous:organic phase ratio with its observed particle size, polydispersity index, zeta potential, and entrapment efficiency of 208 ± 4.29 nm, 0.35 ± 0.04, 35.7 ± 1.65 mV, and 66.78 ± 3.89%, respectively. ITZ-ZNPs were imaged by TEM that revealed spherical core–shell structure, and DSC proved ITZ transformation from crystalline to amorphous form. FT-IR showed coupling of zein NH group with ITZ carbonyl group without affecting ITZ antifungal activity as confirmed by antifungal activity test that showed enhanced activity of ITZ-ZNPs over the pure drug. Histopathological examination and cytotoxicity tests ensured biosafety and tolerance of ITZ-ZNPs to the colon tissue. The optimized formulation was then loaded into Eudragit S100-coated capsules and both in vitro release and in vivo X-ray imaging confirmed the success of such coated capsules in protecting ITZ from the release in stomach and intestine while targeting ITZ to the colon. The study proved that ITZ-ZNPs is promising and safe nanoparticulate system that can protect ITZ throughout the GIT and targeting its release to the colon with effectual focused local action for the treatment of colon fungal infections. Graphical Abstract

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3