Formulation of tizanidine hydrochloride–loaded provesicular system for improved oral delivery and therapeutic activity employing a 23 full factorial design

Author:

Mohsen Amira Mohamed,El-Hashemy Hadeer Ahmed,Salama Abeer,Darwish Asmaa BadawyORCID

Abstract

AbstractTizanidine hydrochloride (TZN) is one of the most effective centrally acting skeletal muscle relaxants. The objective of this study is to prepare TZN-loaded proniosomes (TZN-PN) aiming at enhanced oral delivery and therapeutic activity. TZN-PN were prepared by coacervation phase separation method. The developed vesicles were characterized via entrapment efficiency percentage (EE%), vesicular size (VS), and zeta potential (ZP). A 23 full factorial design was employed to attain an optimized TZN-PN formulation. The optimized TZN-PN were further characterized via in vitro release study and transmission electron microscopy (TEM). In vivo rotarod test was employed for determination of the muscle relaxant activities of rats and levels of GABA and EAAT2 were detected. The developed TZN-PN exhibited relatively high EE% (75.78–85.45%), a VS ranging between (348–559 nm), and a ZP (−26.47 to −59.64). In vitro release profiles revealed sustained release of TZN from the optimized TZN-PN, compared to free drug up to 24 h. In vivo rotarod study revealed that the elevation in coordination was in the following order: normal control < free TZN < market product < TZN-PN (F6). Moreover, the optimized TZN-PN exhibited significant elevated coordination activity by 39% and 26% compared to control group and market product group, respectively. This was accompanied with an elevation in both GABA and EAAT2 serum levels. Thus, it could be concluded that encapsulation of TZN in the provesicular nanosystem proniosomes has enhanced the anti-nociceptive effect of the drug and consequently its therapeutic activity. Graphical abstract

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3