In-line warming reduces in-line pressure of subcutaneous infusion of concentrated immunoglobulins

Author:

Leidenmühler Peter,Höfinghoff Joris,Haider Norbert,Brachtl Gerald,Weiller Markus,Bilic Ivan,Gangadharan Bagirath

Abstract

AbstractImmunoglobulin replacement therapy is a life-saving treatment in patients with immunodeficiency and effective in the management of autoimmune disorders. Immunoglobulins are administered intravenously or subcutaneously, with the latter route reducing systemic reactions and providing an option for self-infusion, increasing patient convenience, while decreasing patient burden, healthcare utilization, and costs. A major limitation with subcutaneous administrations is the frequency of infusion due to limited volumes administrable into subcutaneous space, necessitating increased drug concentration, absorption, and dispersion. Increasing the concentration of immunoglobulins from 10 to 20% halves the required volume, but leads to higher dynamic viscosity, limiting infusion rate. Recombinant human hyaluronidase increases dispersion and absorption of immunoglobulins allowing administration of ≤ 600 mL per site, but does not change viscosity. Since the viscosity of fluids depends on temperature, we tested the feasibility of in-line warming of immunoglobulin formulations to physiological temperatures. In vitro analysis showed no negative impact of in-line warming to 38 °C on product quality. Subcutaneous infusion studies in pigs confirmed the feasibility of infusion rates of up to 7.5 mL/min with in-line warmed TAK-881, an immunoglobulin 20% facilitated with recombinant human hyaluronidase. In-line pressures were reduced compared with conventional immunoglobulin 20%, and local tolerance was not altered. Reduction of in-line pressures was more pronounced with thinner needle sets, indicating a potential benefit for patients. In summary, an in in-line warming device can circumvent the limitation of high viscosity, while product quality and local tolerance are maintained. The results of the presented studies warrant further testing in a phase 1 clinical study. Graphical Abstract

Funder

Takeda Pharmaceuticals U.S.A.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3