Paclitaxel-loaded elastic liposomes synthesised by microfluidics technique for enhance transdermal delivery

Author:

Jaradat Eman,Meziane Adam,Lamprou Dimitrios A.ORCID

Abstract

AbstractThe inherent flexibility of elastic liposomes (EL) allows them to penetrate the small skin pores and reach the dermal region, making them an optimum candidate for topical drug delivery. Loading chemotherapy in ELs could improve chemotherapy’s topical delivery and localise its effect on skin carcinogenic tissues. Chemotherapy-loaded EL can overcome the limitations of conventional administration of chemotherapies and control the distribution to specific areas of the skin. In the current studies, Paclitaxel was utilised to develop Paclitaxel-loaded EL. As an alternative to the conventional manufacturing methods of EL, this study is one of the novel investigations utilising microfluidic systems to examine the potential to enhance and optimise the quality of Els by the microfluidics method. The primary aim was to achieve EL with a size of < 200 nm, high homogeneity, high encapsulation efficiency, and good stability. A phospholipid (DOPC) combined with neutral and anionic edge activators (Tween 80 and sodium taurocholate hydrate) at various lipid-to-edge activator ratios, was used for the manufacturing of the ELs. A preliminary study was performed to study the size, polydispersity (PDI), and stability to determine the optimum microfluidic parameters and lipid-to-edge activator for paclitaxel encapsulation. Furthermore, physiochemical characterisation was performed on the optimised Paclitaxel–loaded EL using a variety of methods, including Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy, Atomic force microscopy, elasticity, encapsulation efficiency, and In vitro release. The results reveal the microfluidics’ significant impact in enhancing the EL characteristics of EL, especially small and controllable size, Low PDI, and high encapsulation efficiency. Moreover, the edge activator type and concentration highly affect the EL characteristics. The Tween 80 formulations with optimised concentration provide the most suitable size and higher encapsulation efficiency. The release profile of the formulations showed more immediate release from the EL with higher edge activator concentration and a higher % of the released dug from the Tween 80 formulations. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3