A bacterial formula with native strains as alternative to chemical fertiliser for tomato crop

Author:

Paganin Patrizia,Isca Clelia,Tasso Flavia,Calandrelli Tommaso,Migliore Giada,Marras Pier Andrea,Medas Daniela,Dore Elisabetta,De Giudici Giovanni,Sprocati Anna Rosa,Alisi ChiaraORCID

Abstract

AbstractGlobal tomato productivity is threatened by biotic and abiotic stressors. To support and guarantee an adequate yield of tomato crops, agricultural practices have been based on the intensive use of fertilisers with negative impacts on the environment. This study presents a simple and effective strategy of functional bioaugmentation, suitable for different varieties, to replace chemical fertilisation. A tailored microbial formula composed by eight indigenous strains (including the genera Delftia, Pseudomonas, Paenarthrobacter, Phyllobacterium, Bacillus, and Acinetobacter) was developed as biofertilizer. Strains were selected from native soil for their plant growth-promoting (PGP) functions, and combined respecting the taxonomic composition of the original PGP heterotrophic community structure. The effect of the bio-fertilisation vs chemical fertilisation was tested in three successive field trials in the company greenhouse, with different tomato varieties (Camone, Oblungo, Cherry). When bio-fertilisation was applied only twice during the Camone’s life cycle, tomato yield was significantly reduced (0.8 vs 2.1 kg per plant, p = 0.0003). However, monthly inoculation during plant growth led to a fruit yield comparable to that obtained with chemical fertilisers (about 1.5 kg per plant for Oblungo, and about 2 kg per plant for Cherry variety, p = 0.9999). Bio-fertilization did not significantly affect plant height; only during the last growing period of the Cherry variety, a significantly higher average plant height (p < 0.0001) was observed with chemical fertiliser. The results indicate that a knowledge-based bacterial formula and monthly inoculation during the plant growth can be a successful bio-fertilisation strategy. These findings may pave the way towards more sustainable tomato production, since farming practices are becoming increasingly crucial, in accordance with Agenda 2030 and the UE “Farm to Fork” strategy. Graphical Abstract

Funder

EU-ERANETMED2

Ente per le Nuove Tecnologie, l'Energia e l'Ambiente

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3