Abstract
Abstract
Ten doubled haploid (DH) lines of winter barley with an increased range of freezing/drought tolerance were used to identify phytohormones involved in plant stress acclimation. Cold hardening and drought stress were applied at the most critical stages of plant development on young seedlings and heading plants, respectively. The level of the phytohormones was significantly higher at heading, more than 5-fold in respect of salicylic acid (SA) and total brassinosteroids (BRs) and 1.7-fold in the case of abscisic acid (ABA). Moreover, the spectrum of detectable BRs increased from one—homocastasterone (HCS)—found in seedlings to four BRs identified in heading plants [HCS, castasterone (CS), teasterone and dolicholide], with the last one detected for the first time in cereal species. To some extent freezing tolerance seems to be determined by native hormonal status as control seedlings of tolerant DH lines contained 1.4- and 2.3-fold lower amount of ABA and HCS and 2.3-fold higher amount of SA in comparison to freezing-sensitive ones. Such dependency was not observed in heading plants as significant variation in CS content was the only detected difference. Under stress treatments, tolerant DH lines accumulated significantly lower (75–81%) amount of ABA, which probably reflected lower stress intensity resulting from another defence strategy. In contrast, stress-induced significant almost 2-fold increase in HCS/CS and 2–3-fold decrease in SA content specific for tolerant DH lines of barley suggest the involvement of these molecules in freezing/drought defence. Detected correlations suggest their interaction with nonspecific peroxidase and low molecular weight antioxidants.
Funder
Polish Ministry of Agriculture and Rural Development
European Regional Development Fund
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Agronomy and Crop Science,Physiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献