The role of genetic variation in Zea mays response to beneficial endophytes

Author:

Schultz Corey R.ORCID,Brantley Kamaya M.,Wallace Jason G.

Abstract

AbstractGrowth-promoting endophytes have great potential to boost crop production and sustainability. There is, however, a lack of research on how differences in the plant host affect an endophyte’s ability to promote growth. We set out to quantify how different maize genotypes respond to specific growth-promoting endophytes. We inoculated genetically diverse maize lines with three different known beneficial endophytes: Herbaspirillum seropedicae (a Gram-negative bacteria), Burkholderia WP9 (a Gram-negative bacteria), and Serendipita vermifera Subsp. bescii (a Basidiomycota fungi). Maize seedlings were grown for 3 weeks under controlled watering and limited nutrient conditions in the greenhouse and assessed for various growth-promotion phenotypes. We found Herbaspirillum seropedicae to increase chlorophyll content (p = 0.02), plant height (p = 0.012), root length (p = 0.057), and root volume (p = 0.044) significantly in different maize genotypes, while Burkholderia WP9 did not promote growth in maize genotypes under these conditions. Serendipita bescii significantly increased plant height (p = 0.0041), root (p = 0.0004) and shoot biomass (p = 0.0046) for different maize genotypes, and shoot mass growth promotion correlated (r = 0.58, p = 1.97e−09) with measured fungal abundance. Although plant genetic variation by itself had a strong effect on phenotype, its interaction with the different endophytes was weak, and the endophytes rarely produced consistent effects across different genotypes. This genome-by-genome interaction indicates that the relationship between a plant host and beneficial endophytes is complex, and it may partly explain why many microbe-based growth stimulants fail to translate from laboratory settings to the field. Detangling these interactions will provide a ripe area for future studies to understand how to best harness beneficial endophytes for agriculture.

Funder

Foundation for Food and Agriculture Research

University of Georgia

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3