Abstract
Abstract
Monoclonal antibodies (mABs) are of great biopharmaceutical importance for the diagnosis and treatment of diseases. However, their production in mammalian expression hosts usually requires extensive production times and is expensive. Escherichia coli has become a new platform for production of functional small antibody fragment variants. In this study, we have used a rhamnose-inducible expression system that allows precise control of protein expression levels. The system was first evaluated for the cytoplasmic production of super folder green fluorescence protein (sfGFP) in various production platforms and then for the periplasmic production of the anti-HIV single-chain variable antibody fragment (scFv) of PGT135. Anti-HIV broadly neutralizing antibodies, like PGT135, have potential for clinical use to prevent HIV transmission, to promote immune responses and to eradicate infected cells. Different concentrations of L-rhamnose resulted in the controlled production of both sfGFP and scFv PGT135 antibody. In addition, by optimizing the culture conditions, the amount of scFv PGT135 antibody that was expressed soluble or as inclusions bodies could be modulated. The proteins were produced in batch bioreactors, with yields of 4.9 g/L for sfGFP and 0.8 g/L for scFv. The functionality of the purified antibodies was demonstrated by their ability to neutralize a panel of different HIV variants in vitro. We expect that this expression system will prove very useful for the development of a more cost-effective production process for proteins and antibody fragments in microbial cells.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,General Medicine,Biotechnology
Reference43 articles.
1. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M (2012) scFv antibody: principles and clinical application. Clin Dev Immunol 2012:1–15.
https://doi.org/10.1155/2012/980250
2. Althoff E, Wolf A (2018) Media release: two-year data for Novartis brolucizumab reaffirm superiority versus aflibercept in reducing retinal fluid in patients with nAMD. Basel
3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular biology. Wiley, Media
4. Baeshen MN, Al-Hejin AM, Bora RS, Ahmed MMM, Ramadan HAI, Saini KS, Baeshen NA, Redwan EM (2015) Production of biopharmaceuticals in E. coli: current scenario and future perspectives. J Microbiol Biotechnol 25:953–962.
https://doi.org/10.4014/jmb.1412.12079
5. Balbás P, Soberón X, Merino E, Zurita M, Lomeli H, Valle F, Flores N, Bolivar F (1986) Plasmid vector pBR322 and its special-purpose derivatives — a review. Gene 50:3–40.
https://doi.org/10.1016/0378-1119(86)90307-0
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献