Abstract
Abstract
Non-coding RNA (ncRNA) plays a vital part in the regulation of immune responses, growth, and development in plants and animals. Here, the identification, characteristic analysis, and molecular verification of circRNAs in Apis cerana cerana worker larval guts were conducted, followed by in-depth investigation of the expression pattern of larval circRNAs during Ascosphaera apis infection and exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 3178 circRNAs in the larval guts of A. c. cerana were identified, with a length distribution ranging from 15 to 96,007 nt. Additionally, 155, 95, and 86 DEcircRNAs were identified in the in the 4-, 5-, and 6-day-old larval guts following A. apis infection. These DEcircRNAs were predicted to target 29, 25, and 18 parental genes relevant to 12, 20, and 17 GO terms as well as 144, 114, and 61 KEGG pathways, including 5 cellular and 4 humoral immune pathways. Complex competing endogenous RNA (ceRNA) regulatory networks were detected as being formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The target DEmRNAs were engaged in 36, 47, and 47 GO terms as well as 331, 332, and 331 pathways, including 6 cellular and 6 humoral immune pathways. Further, 19 DEcircRNAs, 5 DEmiRNAs, and 3 mRNAs were included in the sub-networks relative to 3 antioxidant enzymes. Finally, back-splicing sites within 15 circRNAs and the difference in the 15 DEcircRNAs’ expression between uninoculated and A. apis–inoculated larval guts were confirmed based on molecular methods. These findings not only enrich our understanding of bee host–fungal pathogen interactions but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. c. cerana larvae against A. apis invasion.
Key points
• The expression pattern of circRNAs was altered in the A. cerana worker larval guts following A. apis infection.
• Back-splicing sites within 15 A. cerana circRNAs were verified using molecular approaches. DEcircRNAs potentially modulated immune responses and antioxidant enzymes in A. apis–challenged host guts.
Funder
the National Natural Science Foundation of China
the Earmarked fund for China Agriculture Research System
the Natural Science Foundation of Fujian Province
the Master Supervisor Team Fund of Fujian Agriculture and Forestry University
the Special Fund for Science and Technology Innovation of Fujian Agriculture and Forestry University
the Scientific Research Project of College of Animal Sciences (College of Bee Science) of Fujian Agriculture and Forestry University
the Undergraduate Innovation and Entrepreneurship Training Program of Fujian province
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献