Exploring Rhodospirillum rubrum response to high doses of carbon monoxide under light and dark conditions

Author:

Godoy Manuel S.,Verdú Irene,de Miguel Santiago R.,Jiménez José D.,Prieto M. AuxiliadoraORCID

Abstract

Abstract Environmental concerns about residues and the traditional disposal methods are driving the search for more environmentally conscious processes, such as pyrolysis and gasification. Their main final product is synthesis gas (syngas) composed of CO, CO2, H2, and methane. Syngas can be converted into various products using CO-tolerant microorganisms. Among them, Rhodospirillum rubrum is highlighted for its biotechnological potential. However, the extent to which high doses of CO affect its physiology is still opaque. For this reason, we have studied R. rubrum behavior under high levels of this gas (up to 2.5 bar), revealing a profound dependence on the presence or absence of light. In darkness, the key variable affected was the lag phase, where the highest levels of CO retarded growth to more than 20 days. Under light, R. rubrum ability to convert CO into CO2 and H2 depended on the presence of an additional carbon source, such as acetate. In those conditions where CO was completely exhausted, CO2 fixation was unblocked, leading to a diauxic growth. To enhance R. rubrum tolerance to CO in darkness, a UV-accelerated adaptive laboratory evolution (UVa-ALE) trial was conducted to isolate clones with shorter lag phases, resulting in the isolation of clones 1.4-2B and 1.7-2A. The adaptation of 1.4-2B was mainly based on mutated enzymes with a metabolic function, while 1.7-3A was mostly affected at regulatory genes, including the anti-repressor PpaA/AerR. Despite these mutations having slight effects on biomass and pigment levels, they successfully provoked a significant reduction in the lag phase (−50%). Keypoints CO affects principally R. rubrum lag phase (darkness) and growth rate (light) CO is converted to CO2/H2during acetate uptake and inhibits CO2fixation (light) UVa-ALE clones showed a 50% reduction in the lag phase (darkness) Graphical Abstract

Funder

European Union’s Horizon 2020

Consejo Superior de Investigaciones Científicas

Spanish Ministry of Science and Innovation

Comunidad de Madrid

Ministerio de Ciencia e Innovación

Ministerio de Universidades

HORIZON EUROPE Framework Programme

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3