Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose

Author:

Lackner NinaORCID,Wagner Andreas O.ORCID,Illmer PaulORCID

Abstract

AbstractSubstrates with high sulfate levels pose problems for biogas production as they allow sulfate reducing bacteria to compete with syntrophic and methanogenic members of the community. In addition, the end product of sulfate reduction, hydrogen sulfide, is toxic and corrosive. Here we show how sulfate addition affects physiological processes in a thermophilic methanogenic system by analyzing the carbon flow and the microbial community with quantitative PCR and amplicon sequencing of the 16s rRNA gene. A sulfate addition of 0.5 to 3 g/L caused a decline in methane production by 73–92%, while higher sulfate concentrations had no additional inhibitory effect. Generally, sulfate addition induced a shift in the composition of the microbial community towards a higher dominance of Firmicutes and decreasing abundances of Bacteroidetes and Euryarchaeota. The abundance of methanogens (e.g., Methanoculleus and Methanosarcina) was reduced, while sulfate reducing bacteria (especially Candidatus Desulforudis and Desulfotomaculum) increased significantly in presence of sulfate. The sulfate addition had a significant impact on the carbon flow within the system, shifting the end product from methane and carbon dioxide to acetate and carbon dioxide. Interestingly, methane production quickly resumed, when sulfate was no longer present in the system. Despite the strong impact of sulfate addition on the carbon flow and the microbial community structure during thermophilic biogas production, short-term process disturbances caused by unexpected introduction of sulfate may be overcome due to the high resilience of the engaged microorganisms.

Funder

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3