Acyl carrier protein tag can enhance tobacco etch virus protease stability and promote its covalent immobilisation

Author:

Li Xuefeng,Huang Jiahua,Zhou Junjie,Sun Changsheng,Zheng Yujiao,Wang Yuan,Zhu Jin,Wang ShengbinORCID

Abstract

Abstract Fusion expression is widely employed to enhance the solubility of recombinant proteins. However, removal of the fusion tag is often required due to its potential impact on the structure and activity of passenger proteins. Tobacco etch virus (TEV) protease is widely used for this purpose due to its stringent sequence recognition. In the present work, fusion to the acyl carrier protein from E. coli fatty acid synthase (ACP) significantly increased the yield of recombinant soluble TEV, and the ACP tag also greatly improved TEV stability. The cleavage activity of TEV was not affected by the ACP fusion tag, and ACP-TEV retained high activity, even at unfavourable pH values. Moreover, ACP-TEV could be efficiently modified by co-expressed E. coli holo-ACP synthase (AcpS), leading to covalent attachment of 4′-phosphopantetheine (4′-PP) group to ACP. The sulfhydryl group of the long, flexible 4′-PP chain displayed high specific reactivity with iodoacetyl groups on the solid support. Thus, TEV could be immobilised effectively and conveniently via the active holo-ACP, and immobilised TEV retained high cleavage activity after a long storage period and several cycles of reuse. As a low-cost and recyclable biocatalyst, TEV immobilised by this method holds promise for biotechnological research and development. Key points The ACP tag greatly increased the soluble expression and stability of TEV protease. The ACP tag did not affect the cleavage activity of TEV. The holo-ACP Tag effectively mediated the covalent immobilisation of TEV.

Funder

the Science and Technology Program of Guangzhou

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3