Abstract
Abstract
Vacuum foam drying (VFD) has been shown to improve the thermostability and long-term shelf life of Newcastle Disease Virus (NDV). This study optimized the VFD process to improve the shelf life of NDV at laboratory-scale and then tested the optimized conditions at pilot-scale. The optimal NDV to T5 formulation ratio was determined to be 1:1 or 3:2. Using the 1:1 virus to formulation ratio, the optimal filling volumes were determined to be 13–17% of the vial capacity. The optimized VFD process conditions were determined to be at a shelf temperature of 25℃ with a minimum overall drying time of 44 h. The vaccine samples prepared using these optimized conditions at laboratory-scale exhibited virus titer losses of ≤ 1.0 log10 with residual moisture content (RMC) below 3%. Furthermore, these samples were transported for 97 days around China at ambient temperature without significant titer loss, thus demonstrating the thermostability of the NDV-VFD vaccine. Pilot-scale testing of the NDV-VFD vaccine at optimized conditions showed promising results for up-scaling the process as the RMC was below 3%. However, the virus titer loss was slightly above 1.0 log10 (approximately 1.1 log10). Therefore, the NDV-VFD process requires further optimization at pilot scale to obtain a titer loss of ≤ 1.0 log10. Results from this study provide important guidance for possible industrialization of NDV-VFD vaccine in the future.
Key points
• The process optimization and scale-up test of thermostable NDV vaccine prepared through VFD is reported for the first time in this study.
• The live attenuated NDV-VFD vaccine maintained thermostability for 97 days during long distance transportation in summer without cold chain conditions.
• The optimized NDV-VFD vaccine preparations evaluated at pilot-scale maintained acceptable levels of infectivity after preservation at 37℃ for 90 days, which demonstrated the feasibility of the vaccine for industrialization.
Funder
Jiangsu Agricultural Science and Technology Independent Innovation Fund
The Key Research and Development Program of Jiangsu Province
University of KwaZulu Natal Research grant
NRF
MRC SIR Grant
University of KwaZulu-Natal
Publisher
Springer Science and Business Media LLC