Xylanase treatment of eucalypt kraft pulps: effect of carryover

Author:

Matos José M. S.,Evtuguin Dmitry V.ORCID,de Sousa António P. Mendes,Carvalho M. Graça V. S.

Abstract

Abstract The influence of pulp carryover on the efficiency of the xylanase (X) treatment of industrial unbleached and oxygen-delignified eucalypt kraft pulps (A1 and A2 pulps, with kappa number (KN) values of 16 and 10, respectively), collected at the same pulp mill, was studied regarding the consumption of bleaching chemicals and pulp bleachability. Another non-oxygen-delignified eucalyptus kraft pulp of KN 13 was received after the extended cooking from a different pulp mill (pulp B). The assays were performed with both lab-washed (carryover-free) and unwashed (carryover-rich) pulps. Both lab-washed and unwashed pulps with carryover were subjected to X treatment, the former being demonstrating considerably higher ClO2 savings than the pulps containing carryover. The savings of bleaching reagents were higher when the X stage was applied to the A1 pulp than to the A2 pulp. This advantage of A1 pulp, however, was not confirmed when using unwashed pulps. In contrast, the gains obtained from the X treatment of unwashed pulp A2 were practically as high as those observed for the lab-washed A2 pulp. Furthermore, a similar effect in X stage was recorded for unwashed pulps having close KN: oxygen-delignified A2 pulp and non-oxygen-delignified B pulp. The results suggest that pulp carryover and initial pH were the key factors relating to the effectiveness of X treatment. The application of X treatment to the A2 unwashed pulp (after the oxygen stage) not only saved 20% of the ClO2 and 10% of the sodium hydroxide, but also improved the brightness stability of the bleached pulp without affecting its papermaking properties. Key points Xylanase treatment boosts kraft pulp bleaching Pulp carryover hinders the xylanase treatment Nearly 20% of ClO2 and 10% NaOH savings can be reached using xylanase

Funder

Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação

Universidade de Aveiro

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3