Characterization of the ADP-β-d-manno-heptose biosynthetic enzymes from two pathogenic Vibrio strains

Author:

Shi Zhaoxiang,Tang Yue,Wang Zhenyi,Wang Min,Zhong Zijian,Jia Jingming,Chen YihuaORCID

Abstract

Abstract ADP-activated β-d-manno-heptoses (ADP-β-d-manno-heptoses) are precursors for the biosynthesis of the inner core of lipopolysaccharide in Gram-negative bacteria. Recently, ADP-d-glycero-β-d-manno-heptose (ADP-d,d-manno-heptose) and its C-6′′ epimer, ADP-l-glycero-β-d-manno-heptose (ADP-l,d-manno-heptose), were identified as potent pathogen-associated molecular patterns (PAMPs) that can trigger robust innate immune responses. Although the production of ADP-d,d-manno-heptose has been studied in several different pathogenic Gram-negative bacteria, current knowledge of ADP-β-d-manno-heptose biosynthesis in Vibrio strains remains limited. Here, we characterized the biosynthetic enzymes of ADP-d,d-manno-heptose and the epimerase that converts it to ADP-l,d-manno-heptose from Vibrio cholerae (the causative agent of pandemic cholera) and Vibrio parahaemolyticus (non-cholera pathogen causing vibriosis with clinical manifestations of gastroenteritis and wound infections) in comparison with their isozymes from Escherichia coli. Moreover, we discovered that β-d-mannose 1-phosphate, but not α-d-mannose 1-phosphate, could be activated to its ADP form by the nucleotidyltransferase domains of bifunctional kinase/nucleotidyltransferases HldEVC (from V. cholerae) and HldEVP (from V. parahaemolyticus). Kinetic analyses of the nucleotidyltransferase domains of HldEVC and HldEVP together with the E. coli–derived HldEEC were thus carried out using β-d-mannose 1-phosphate as a mimic sugar substrate. Overall, our works suggest that V. cholerae and V. parahaemolyticus are capable of synthesizing ADP-β-d-manno-heptoses and lay a foundation for further physiological function explorations on manno-heptose metabolism in Vibrio strains. Key points • Vibrio strains adopt the same biosynthetic pathway as E. coli in synthesizing ADP-β-d-manno-heptoses. • HldEs from two Vibrio strains and E. coli could activate β-d-mannose 1-phosphate to ADP-β-d-mannose. • Comparable nucleotidyltransfer efficiencies were observed in the kinetic studies of HldEs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3