Enhancing metabolic efficiency via novel constitutive promoters to produce protocatechuic acid in Escherichia coli

Author:

Örn Oliver Englund,Hagman Arne,Ismail Mohamed,Leiva Eriksson NélidaORCID,Hatti-Kaul RajniORCID

Abstract

Abstract The antioxidant molecule protocatechuic acid (PCA) can also serve as a precursor for polymer building blocks. PCA can be produced in Escherichia coli overexpressing 3-dehydroshikimate dehydratase (DSD), an enzyme that catalyses the transformation of 3-dehydroshikimate to PCA. Nevertheless, optimizing the expression rate of recombinant enzymes is a key factor in metabolic engineering when producing biobased chemicals. In this study, a degenerate synthetic promoter approach was investigated to improve further the production of PCA. By limited screening of a randomized promoter library made using pSEVA221 plasmid in E. coli, three novel synthetic constitutive promoters were selected that increased the PCA yield from glucose by 10–21% compared to the inducible T7-promoter. RT-qPCR analysis showed that the DSD gene, regulated by the synthetic promoters, had high expression during the exponential phase, albeit the gene expression level dropped 250-fold during stationary phase. Besides the increased product yield, the synthetic promoters avoided the need for a costly inducer for gene expression. Screening of the entire promoter library is likely to provide more positive hits. The study also shows that E. coli transformed with the DSD gene on either pSEVA221 or pCDFDuet plasmids exhibit background PCA levels (~ 0.04 g/L) in the absence of a transcriptional regulatory element. Key points • Degenerate synthetic promoters are remarkable tools to produce protocatechuic acid. • The constitutive synthetic promoters did not affect the growth rate of the bacterial host. • The use of constitutive synthetic promoters avoids the need for the costly inducer.

Funder

Stiftelsen för Miljöstrategisk Forskning

Lund University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3