The alteration of intestinal mucosal α-synuclein expression and mucosal microbiota in Parkinson’s disease

Author:

Shi Jihua,Wang Yiran,Chen Dan,Xu Xue,Li Wenbin,Li Kai,He Jing,Su Wen,Luo QingfengORCID

Abstract

Abstract Parkinson’s disease (PD) is the second most common neurodegenerative disease but still lacks a preclinical strategy to identify it. The diagnostic value of intestinal mucosal α-synuclein (αSyn) in PD has not drawn a uniform conclusion. The relationship between the alteration of intestinal mucosal αSyn expression and mucosal microbiota is unclear. Nineteen PD patients and twenty-two healthy controls were enrolled in our study from whom were collected, using gastrointestinal endoscopes, duodenal and sigmoid mucosal samples for biopsy. Multiplex immunohistochemistry was performed to detect total, phosphorylate, and oligomer α-synuclein. Next-generation 16S rRNA amplicon sequencing was applied for taxonomic analysis. The results implied that oligomer α-synuclein (OSyn) in sigmoid mucosa of PD patients was transferred from the intestinal epithelial cell membrane to the cytoplasm, acinar lumen, and stroma. Its distribution feature was significantly different between the two groups, especially the ratio of OSyn/αSyn. The microbiota composition in mucosa also differed. The relative abundances of Kiloniellales, Flavobacteriaceae, and CAG56 were lower, while those of Proteobacteria, Gammaproteobacteria, Burkholderiales, Burkholdriaceae, Oxalobacteraceae, Ralstonia, Massilla, and Lactoccus were higher in duodenal mucosa of PD patients. The relative abundances of Thermoactinomycetales and Thermoactinomycetaceae were lower, while those of Prevotellaceae and Bifidobacterium longum were higher in patients’ sigmoid mucosa. Further, the OSyn/αSyn level was positively correlated with the relative abundances of Proteobacteria, Gammaproteobacteria, Burkholderiales, Pseudomonadales, Burkholderiaceae, and Ralstonia in the duodenal mucosa, while it was negatively correlated with the Chao1 index and observed operational taxonomic units of microbiota in sigmoid mucosa. The intestinal mucosal microbiota composition of PD patients altered with the relative abundances of proinflammatory bacteria in the duodenal mucosa increased. The ratio of the OSyn/αSyn level in the sigmoid mucosa indicated a potential diagnostic value for PD, which also correlated with mucosal microbiota diversity and composition. Key points • The distribution of OSyn in sigmoid mucosa differed between PD patients and healthy controls. • Significant alterations in the microbiome were found in PD patients’ gut mucosa. • OSyn/αSyn level in sigmoid mucosa indicated a potential diagnostic value for PD.

Funder

Fundamental Research Funds for the Central Universities

Peking Union Medical College Hospital and National High Level Hospital Clinical Research Funding

National High Level Hospital Clinical Research Funding

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Reference43 articles.

1. Aldecoa I, Navarro-Otano J, Stefanova N, Sprenger FS, Seppi K, Poewe W, Cuatrecasas M, Valldeoriola F, Gelpi E, Tolosa E (2015) Alpha-synuclein immunoreactivity patterns in the enteric nervous system. Neurosci Lett 602:145–149. https://doi.org/10.1016/j.neulet.2015.07.005

2. Arvans DL, Vavricka SR, Ren H, Musch MW, Kang L, Rocha FG, Lucioni A, Turner JR, Alverdy J, Chang EB (2005) Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am J Physiol-Gastr L 288(4):G696–G704. https://doi.org/10.1152/ajpgi.00206.2004

3. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

4. Bottner M, Zorenkov D, Hellwig I, Barrenschee M, Harde J, Fricke T, Deuschl G, Egberts JH, Becker T, Fritscher-Ravens A, Arlt A, Wedel T (2012) Expression pattern and localization of alpha-synuclein in the human enteric nervous system. Neurobiol Dis 48(3):474–480. https://doi.org/10.1016/j.nbd.2012.07.018

5. Boussarie G, Bakker J, Wangensteen OS, Mariani S, Bonnin L, Juhel JB, Kiszka JJ, Kulbicki M, Manel S, Robbins WD, Vigliola L, Mouillot D (2018) Environmental DNA illuminates the dark diversity of sharks. Sci Adv 4(5):eaap9661. https://doi.org/10.1126/sciadv.aap9661

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3