Highly tunable TetR-dependent target gene expression in the acetic acid bacterium Gluconobacter oxydans

Author:

Fricke Philipp MoritzORCID,Lürkens MarthaORCID,Hünnefeld MaxORCID,Sonntag Christiane K.ORCID,Bott MichaelORCID,Davari Mehdi D.ORCID,Polen TinoORCID

Abstract

Abstract For the acetic acid bacterium (AAB) Gluconobacter oxydans only recently the first tight system for regulatable target gene expression became available based on the heterologous repressor-activator protein AraC from Escherichia coli and the target promoter ParaBAD. In this study, we tested pure repressor-based TetR- and LacI-dependent target gene expression in G. oxydans by applying the same plasmid backbone and construction principles that we have used successfully for the araC-ParaBAD system. When using a pBBR1MCS-5-based plasmid, the non-induced basal expression of the Tn10-based TetR-dependent expression system was extremely low. This allowed calculated induction ratios of up to more than 3500-fold with the fluorescence reporter protein mNeonGreen (mNG). The induction was highly homogeneous and tunable by varying the anhydrotetracycline concentration from 10 to 200 ng/mL. The already strong reporter gene expression could be doubled by inserting the ribosome binding site AGGAGA into the 3’ region of the Ptet sequence upstream from mNG. Alternative plasmid constructs used as controls revealed a strong influence of transcription terminators and antibiotics resistance gene of the plasmid backbone on the resulting expression performance. In contrast to the TetR-Ptet-system, pBBR1MCS-5-based LacI-dependent expression from PlacUV5 always exhibited some non-induced basal reporter expression and was therefore tunable only up to 40-fold induction by IPTG. The leakiness of PlacUV5 when not induced was independent of potential read-through from the lacI promoter. Protein-DNA binding simulations for pH 7, 6, 5, and 4 by computational modeling of LacI, TetR, and AraC with DNA suggested a decreased DNA binding of LacI when pH is below 6, the latter possibly causing the leakiness of LacI-dependent systems hitherto tested in AAB. In summary, the expression performance of the pBBR1MCS-5-based TetR-Ptet system makes this system highly suitable for applications in G. oxydans and possibly in other AAB. Key Points A pBBR1MCS-5-based TetR-Ptet system was tunable up to more than 3500-fold induction. A pBBR1MCS-5-based LacI-PlacUV5 system was leaky and tunable only up to 40-fold. Modeling of protein-DNA binding suggested decreased DNA binding of LacI at pH < 6.

Funder

bundesministerium für bildung und forschung

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3