Silver nanoclusters with Ag2+/3+ oxidative states are a new highly effective tool against phytopathogenic bacteria

Author:

Orfei Benedetta,Moretti ChiaraluceORCID,Loreti Stefania,Tatulli Giuseppe,Onofri Andrea,Scotti Luca,Aceto Antonio,Buonaurio Roberto

Abstract

Abstract The main measure worldwide adopted to manage plant bacterial diseases is based on the application of copper compounds, which are often partially efficacious for the frequent appearance of copper-resistant bacterial strains and have raised concerns for their toxicity to the environment and humans. Therefore, there is an increasing need to develop new environmentally friendly, efficient, and reliable strategies for controlling plant bacterial diseases, and among them, the use of nanoparticles seems promising. The present study aimed to evaluate the feasibility of protecting plants against attacks of gram-negative and gram-positive phytopathogenic bacteria by using electrochemically synthesized silver ultra nanoclusters (ARGIRIUM‑SUNCs®) with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+). ARGIRIUM‑SUNCs strongly inhibited the in vitro growth (effective concentration, EC50, less than 1 ppm) and biofilm formation of Pseudomonas syringae pv. tomato and of quarantine bacteria Xanthomonas vesicatoria, Xylella fastidiosa subsp. pauca, and Clavibacter michiganensis subsp. michiganensis. In addition, treatments with ARGIRIUM‑SUNCs also provoked the eradication of biofilm for P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis. Treatment of tomato plants via root absorption with ARGIRIUM‑SUNCs (10 ppm) is not phytotoxic and protected (80%) the plants against P. syringae pv. tomato attacks. ARGIRIUM‑SUNCs at low doses induced hormetic effects on P. syringae pv. tomato, X. vesicatoria, and C. michiganensis subsp. michiganensis as well as on tomato root growth. The use of ARGIRIUM‑SUNCs in protecting plants against phytopathogenic bacteria is a possible alternative control measure. Key points • ARGIRIUM‑SUNC has strong antimicrobial activities against phytopathogenic bacteria; • ARGIRIUM‑SUNC inhibits biofilm formation at low doses; • ARGIRIUM‑SUNC protects tomato plants against bacterial speck disease.

Funder

University of Perugia

Università degli Studi di Perugia

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3