Clustered surface amino acid residues modulate the acid stability of GH10 xylanase in fungi

Author:

Xia Yanwei,Wang Wei,Wei Yaning,Guo Chuanxu,Song Sisi,Cai Siqi,Miao YouzhiORCID

Abstract

Abstract Acidic xylanases are widely used in industries such as biofuels, animal feeding, and fruit juice clarification due to their tolerance to acidic environments. However, the factors controlling their acid stability, especially in GH10 xylanases, are only partially understood. In this study, we identified a series of thermostable GH10 xylanases with optimal temperatures ranging from 70 to 90 °C, and among these, five enzymes (Xyn10C, Xyn10RE, Xyn10TC, Xyn10BS, and Xyn10PC) exhibited remarkable stability at pH 2.0. Our statistical analysis highlighted several factors contributing to the acid stability of GH10 xylanases, including electrostatic repulsion, π-π stacking, ionic bonds, hydrogen bonds, and Van der Waals interactions. Furthermore, through mutagenesis studies, we uncovered that acid stability is influenced by a complex interplay of amino acid residues. The key amino acid sites determining the acid stability of GH10 xylanases were thus elucidated, mainly concentrated in two surface regions behind the enzyme active center. Notably, the critical residues associated with acid stability markedly enhanced Xyn10RE’s thermostability by more than sixfold, indicating a potential acid-thermal interplay in GH10 xylanases. This study not only reported a series of valuable genes but also provided a range of modification targets for enhancing the acid stability of GH10 xylanases. Key points • Five acid stable and thermostable GH10 xylanases were reported. • The key amino acid sites, mainly forming two enriched surface regions behind the enzyme active center, were identified responsible for acid stability of GH10 xylanases. • The finding revealed interactive amino acid sites, offering a pathway for synergistic enhancement of both acid stability and thermostability in GH10 xylanase modifications.

Funder

the Jiangsu Provincial Natural Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3