Abstract
Abstract
Chromochloris zofingiensis is a potential source of natural astaxanthin; however, its rapid growth and astaxanthin enrichment cannot be achieved simultaneously. This study established autotrophic, mixotrophic, and heterotrophic preculture patterns to assess their ameliorative effect on the C. zofingiensis heterotrophic growth state. In comparison, mixotrophic preculture (MP) exhibited the best improving effect on heterotrophic biomass concentration of C. zofingiensis (up to 121.5 g L−1) in a 20 L fermenter, reaching the global leading level. The astaxanthin productivity achieved 111 mg L−1 day−1, 7.4-fold higher than the best record. The transcriptome and 13C tracer-based metabolic flux analysis were used for mechanism inquiry. The results revealed that MP promoted carotenoid and lipid synthesis, and supported synthesis preference of low unsaturated fatty acids represented by C18:1 and C16:0. The MP group maintained the best astaxanthin productivity via mastering the balance between increasing glucose metabolism and inhibition of carotenoid synthesis. The MP strategy optimized the physiological state of C. zofingiensis and realized its heterotrophic high-density growth for an excellent astaxanthin yield on a pilot scale. This strategy exhibits great application potential in the microalgae-related industry.
Key points
• Preculture strategies changed carbon flux and gene expression in C. zofingiensis
• C. zofingiensis realized a high-density culture with MP and fed-batch culture (FBC)
• Astaxanthin productivity achieved 0.111 g L−1day−1with MP and FBC
Graphical Abstract
Publisher
Springer Science and Business Media LLC