Towards rare earth element recovery from wastewaters: biosorption using phototrophic organisms

Author:

Heilmann Marcus,Breiter Roman,Becker Anna MariaORCID

Abstract

Abstract Whilst the biosorption of metal ions by phototrophic (micro)organisms has been demonstrated in earlier and more recent research, the isolation of rare earth elements (REEs) from highly dilute aqueous solutions with this type of biomass remains largely unexplored. Therefore, the selective binding abilities of two microalgae (Calothrix brevissima, Chlorella kessleri) and one moss (Physcomitrella patens) were examined using Neodym and Europium as examples. The biomass of P. patens showed the highest sorption capacities for both REEs (Nd3+: 0.74 ± 0.05 mmol*g−1; Eu3+: 0.48 ± 0.05 mmol*g−1). A comparison with the sorption of precious metals (Au3+, Pt4+) and typical metal ions contained in wastewaters (Pb2+, Fe2+, Cu2+, Ni2+), which might compete for binding sites, revealed that the sorption capacities for Au3+ (1.59 ± 0.07 mmol*g−1) and Pb2+ (0.83 ± 0.02 mmol*g−1) are even higher. Although different patterns of maximum sorption capacities for the tested metal ions were observed for the microalgae, they too showed the highest affinities for Au3+, Pb2+, and Nd3+. Nd-sorption experiments in the pH range from 1 to 6 and the recorded adsorption isotherms for this element showed that the biomass of P. patens has favourable properties as biosorbent compared to the microalgae investigated here. Whilst the cultivation mode did not influence the sorption capacities for the target elements of the two algal species, it had a great impact on the properties of the moss. Thus, further studies are necessary to develop effective biosorption processes for the recovery of REEs from alternative and so far unexploited sources. Key points • The highest binding capacity for selected REEs was registered for P. patens. • The highest biosorption was found for Au and the biomass of the examined moss. • Biosorption capacities of P. patens seem to depend on the cultivation mode.

Funder

Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3