Evolution of microbial dynamics with the introduction of real seawater portions in a low-strength feeding anammox process

Author:

Ji Xiaoming,Wang Yongli,Lee Po-Heng

Abstract

AbstractThe salinity effect on anammox bacteria has been widely reported; however, rare studies describe the microbial dynamics of anammox-based process response to the introduction of real seawater at mainstream conditions. In this study, an anammox process at mainstream conditions without pre-enriching anammox bacteria was shifted to the feeds of a synthetic wastewater with a portion of seawater mixture. It achieved over 0.180 kg-N/(m3 day) of nitrogen removal rate with an additional seawater proportion of 20% in the influent. The bacterial biodiversity was significantly increased with the increase of seawater proportions. High relative abundance of anammox bacteria (34.24–39.92%) related to Ca. Brocadia was enriched and acclimated to the saline environment. However, the introduction of seawater caused the enrichment of nitrite-oxidizing Ca. Nitrospira, which was responsible for the deterioration of nitrogen removal efficiency. Possible adaptation metabolisms in anammox bacteria and other nitrogen transforming bacteria are discussed. These results highlight the importance of microbial diversity for anammox process under the saline environments of 20% and 40% seawater composition.

Funder

Imperial College London

Research Grants Council, University Grants Committee

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3