Crossing and selection of Chlamydomonas reinhardtii strains for biotechnological glycolate production

Author:

Schad Antonia,Rössler Sonja,Nagel Raimund,Wagner Heiko,Wilhelm ChristianORCID

Abstract

Abstract As an alternative to chemical building blocks derived from algal biomass, the excretion of glycolate has been proposed. This process has been observed in green algae such as Chlamydomonas reinhardtii as a product of the photorespiratory pathway. Photorespiration generally occurs at low CO2 and high O2 concentrations, through the key enzyme RubisCO initiating the pathway via oxygenation of 1.5-ribulose-bisphosphate. In wild-type strains, photorespiration is usually suppressed in favour of carboxylation due to the cellular carbon concentrating mechanisms (CCMs) controlling the internal CO2 concentration. Additionally, newly produced glycolate is directly metabolized in the C2 cycle. Therefore, both the CCMs and the C2 cycle are the key elements which limit the glycolate production in wild-type cells. Using conventional crossing techniques, we have developed Chlamydomonas reinhardtii double mutants deficient in these two key pathways to direct carbon flux to glycolate excretion. Under aeration with ambient air, the double mutant D6 showed a significant and stable glycolate production when compared to the non-producing wild type. Interestingly, this mutant can act as a carbon sink by fixing atmospheric CO2 into glycolate without requiring any additional CO2 supply. Thus, the double-mutant strain D6 can be used as a photocatalyst to produce chemical building blocks and as a future platform for algal-based biotechnology. Key Points Chlamydomonas reinhardtii cia5 gyd double mutants were developed by sexual crossing The double mutation eliminates the need for an inhibitor in glycolate production The strain D6 produces significant amounts of glycolate with ambient air only

Funder

Sächsische Aufbaubank

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3