Activation of MG53 Enhances Cell Survival and Engraftment of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Injured Hearts

Author:

Park Ki Ho,He Xingyu,Jiang Lin,Zhu Hua,Liang Jialiang,Wang YigangORCID,Ma Jianjie

Abstract

Abstract Background and Objective Our previous studies demonstrated that MG53 protein can protect the myocardium, but its use as a therapeutic is challenging due to its short half-life in blood circulation. This study aimed to investigate the cardioprotective role of MG53 on human induced pluripotent stem cell-derived cardiomyocytes (HiPSC-CMs) in the context of myocardial ischemia/reperfusion (I/R). Methods In vitro: HiPSC-CMs were transfected with adenoviral MG53 (HiPSC-CMsMG53), in which the expression of MG53 can be controlled by doxycycline (Dox), and the cells were then exposed to H2O2 to mimic ischemia/reperfusion injury. In vivo: HiPSC-CMsMG53 were transplanted into the peri-infarct region in NSG™ mice after I/R. After surgery, mice were treated with Dox (+ Dox) to activate MG53 expression (sucrose as a control of -Dox) and then assessed by echocardiography and immunohistochemistry. Results MG53 can be expressed in HiPSC-CMMG53 and released into the culture medium after adding Dox. The cell survival rate of HiPSC-CMMG53 was improved by Dox under the H2O2 condition. After 14 and 28 days of ischemia/reperfusion (I/R), transplanted HiPSC-CMsMG53 + Dox significantly improved heart function, including ejection fraction (EF) and fractional shortening (FS) in mice, compared to HiPSC-CMsMG53-Dox, and reduced the size of the infarction. Additionally, HiPSC-CMMG53 + Dox mice demonstrated significant engraftment in the myocardium as shown by staining human nuclei-positive cells. In addition, the cell survival-related AKT signaling was found to be more active in HiPSC-CMMG53 + Dox transplanted mice’s myocardium compared to the HiPSC-CMMG53-Dox group. Notably, the Dox treatment did not cause harm to other organs. Conclusion Inducible MG53 expression is a promising approach to enhance cell survival and engraftment of HiPSC-CMs for cardiac repair. Graphical Abstract

Funder

Foundation for the National Institutes of Health

American Heart Association

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3