Hypoxia Promotes the Stemness of Mesangiogenic Progenitor Cells and Prevents Osteogenic but not Angiogenic Differentiation
-
Published:2024-06-24
Issue:
Volume:
Page:
-
ISSN:2629-3269
-
Container-title:Stem Cell Reviews and Reports
-
language:en
-
Short-container-title:Stem Cell Rev and Rep
Author:
Burzi Irene Sofia, Parchi Paolo Domenico, Barachini Serena, Pardini Eleonora, Sardo Infirri Gisella, Montali Marina, Petrini IacopoORCID
Abstract
AbstractThe stem cell niche in the bone marrow is a hypoxic environment, where the low oxygen tension preserves the pluripotency of stem cells. We have identified mesangiogenic progenitor cells (MPC) exhibiting angiogenic and mesenchymal differentiation capabilities in vitro. The effect of hypoxia on MPC has not been previously explored. In this study, MPCs were isolated from volunteers' bone marrow and cultured under both normoxic and hypoxic conditions (3% O2). MPCs maintained their characteristic morphology and surface marker expression (CD18 + CD31 + CD90-CD73-) under hypoxia. However, hypoxic conditions led to reduced MPC proliferation in primary cultures and hindered their differentiation into mesenchymal stem cells (MSCs) upon exposure to differentiative medium. First passage MSCs derived from MPC appeared unaffected by hypoxia, exhibiting no discernible differences in proliferative potential or cell cycle. However, hypoxia impeded the subsequent osteogenic differentiation of MSCs, as evidenced by decreased hydroxyapatite deposition. Conversely, hypoxia did not impact the angiogenic differentiation potential of MPCs, as demonstrated by spheroid-based assays revealing comparable angiogenic sprouting and tube-like formation capabilities under both hypoxic and normoxic conditions. These findings indicate that hypoxia preserves the stemness phenotype of MPCs, inhibits their differentiation into MSCs, and hampers their osteogenic maturation while leaving their angiogenic potential unaffected. Our study sheds light on the intricate effects of hypoxia on bone marrow-derived MPCs and their differentiation pathways.
Graphical Abstract
Funder
AIL Pisa Università di Pisa
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Mitchell, E., Spencer Chapman, M., Williams, N., Dawson, K. J., Mende, N., Calderbank, E. F., et al. (2022). Clonal dynamics of haematopoiesis across the human lifespan. Nature, 606(7913), 343–350. 2. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41–49. 3. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705. 4. Trombi, L., Pacini, S., Montali, M., Fazzi, R., Chiellini, F., Ikehara, S., et al. (2009). Selective culture of mesodermal progenitor cells. Stem Cells and Development, 18(8), 1227–1234. 5. Montali, M., Barachini, S., Panvini, F. M., Carnicelli, V., Fulceri, F., Petrini, I., et al. (2016). Growth Factor Content in Human Sera Affects the Isolation of Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow. Frontiers in Cell and Developmental Biology, 4, 114.
|
|