Image segmentation and classification for fission track analysis for nuclear forensics using U-net model

Author:

Elgad NoamORCID,Babayew Rami,Last Mark,Weiss Aryeh,Gilad Erez,Levy Galit Katarivas,Halevy Itzhak

Abstract

AbstractThis study introduces a novel methodology for the detection and classification of fission track (FT) clusters in microscope images, employing state-of-the-art deep learning techniques for segmentation and classification (Elgad in nuclear forensics—fission track analysis—star segmentation and classification using deep learning, Ben-Gurion University, 2022). The U-Net model, a fully convolutional network, was used to carry out the segmentation of various star-like patterns in both single-class and multi-class scenarios.

Funder

Ben-Gurion University

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. Elgad N (2022) Nuclear forensics—fission track analysis—star segmentation and classification using deep learning. In: M.Sc. Thesis. Ben Gurion University

2. Donohue DL (1998) Strengthening IAEA safeguards through environmental sampling and analysis. J Alloy Compd 271–273:11–18

3. Bush W et al. (2001) IAEA experience with environmental sampling at gas centrifuge enrichment plants in the European Union. In: Proceedings of the Symposium on International Safeguards: Verification and Nuclear Material Security

4. Stebelkov V (2005) Informativeness of morphology analysis of uranium microparticles from industrial dust at nuclear plants. In: GLOBAL 2005: Proceedings of the international conference on nuclear energy systems for future generation and global sustainability. Japan: Atomic Energy Society of Japan

5. Lee C-G et al (2006) Improved method of fission track sample preparation for detecting particles containing fissile materials in safeguards environmental samples. Jpn J Appl Phys 45(3L):L294

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3