1. A.M. Amleh, E. Cmouzis, and G. Ladas, On second order rational difference equations, Part 1, J. Differ. Equ. Appl., 13:969–1004, 2007.
2. A.D. Bryuno, Analytic form of differential equations, Trans. Mosc. Math. Soc., 25:131–288, 1971.
3. E. Cmouzis and G. Ladas, When does local stability imply global attractivity in rational equations?, J. Differ. Equ. Appl., 12:863–885, 2006.
4. E.A. Grove, E.J. Janowski, C.M. Kent, and G. Ladas, On the rational recursive sequence x n + 1 = α x n + β γ x n + δ x n − 1 $$ {x}_{n+1}=\frac{\left(\alpha {x}_n+\beta \right)}{\left(\gamma {x}_n+\delta \right){x}_{n-1}} $$ , Commun. Appl. Nonlinear Anal., 1:61–72, 1994.
5. M.R.S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman & Hall, Boca Raton, FL, 2002.