Author:
Fu Xiaoye,Gabardo Jean-Pierre
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Analysis
Reference17 articles.
1. Bownik, M., Rzeszotnik, Z., Speegle, D.: A characterization of dimension functions of wavelets. Appl. Comput. Harmon. Anal. 10(1), 71–92 (2001)
2. Dai, X.D., Larson, D.R., Speegle, D.M.: Wavelet sets in $\mathbb{R}^{N}$ . J. Fourier Anal. Appl. 3, 451–456 (1997)
3. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)
4. Flaherty, T., Wang, Y.: Haar-type multi-wavelet bases and self-affine multi-tiles. Asian J. Math. 3(2), 387–400 (1999)
5. Fu, X.Y., Gabardo, J.P.: Self-affine scaling sets in $\mathbb{R}^{2}$ . Mem. Am. Math. Soc. (accepted)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dilation‐and‐modulation frame sets on the half real line;Mathematical Methods in the Applied Sciences;2022-03-14
2. Decomposition of integral self‐affine multi‐tiles;Mathematische Nachrichten;2019-01-17
3. Self-affine scaling sets in ℝ²;Memoirs of the American Mathematical Society;2015-01