Abstract
AbstractWe develop a theory of quantum harmonic analysis on lattices in $${\mathbb {R}}^{2d}$$
R
2
d
. Convolutions of a sequence with an operator and of two operators are defined over a lattice, and using corresponding Fourier transforms of sequences and operators we develop a version of harmonic analysis for these objects. We prove analogues of results from classical harmonic analysis and the quantum harmonic analysis of Werner, including Tauberian theorems and a Wiener division lemma. Gabor multipliers from time-frequency analysis are described as convolutions in this setting. The quantum harmonic analysis is thus a conceptual framework for the study of Gabor multipliers, and several of the results include results on Gabor multipliers as special cases.
Funder
NTNU Norwegian University of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Analysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献