Abstract
AbstractWe prove an extrapolation of compactness theorem for operators on Banach function spaces satisfying certain convexity and concavity conditions. In particular, we show that the boundedness of an operator T in the weighted Lebesgue scale and the compactness of T in the unweighted Lebesgue scale yields compactness of T on a very general class of Banach function spaces. As our main new tool, we prove various characterizations of the boundedness of the Hardy-Littlewood maximal operator on such spaces and their associate spaces, using a novel sparse self-improvement technique. We apply our main results to prove compactness of the commutators of singular integral operators and pointwise multiplication by functions of vanishing mean oscillation on, for example, weighted variable Lebesgue spaces.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Álvarez, J., Bagby, R.J., Kurtz, D.S., Pérez, C.: Weighted estimates for commutators of linear operators. Stud. Math. 104(2), 195–209 (1993)
2. Arai, R., Nakai, E.: Compact commutators of Calderón-Zygmund and generalized fractional integral operators with a function in generalized Campanato spaces on generalized Morrey spaces. Tokyo J. Math. 42(2), 471–496 (2019)
3. Auscher, P., Martell, J.M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. I. General operator theory and weights. Adv. Math. 212(1), 225–276 (2007)
4. Bennett, C., Sharpley, R.: Interpolation of operators. In: Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston (1988)
5. Bényi, Á., Martell, J.M., Moen, K., Stachura, E., Torres, R.H.: Boundedness results for commutators with BMO functions via weighted estimates: a comprehensive approach. Math. Ann. 376(1–2), 61–102 (2020)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献