Abstract
AbstractOn $$ {\mathbb {R}}^N$$
R
N
equipped with a root system R and a multiplicity function $$k>0$$
k
>
0
, we study the generalized (Dunkl) translations $$\tau _{{\textbf{x}}}g(-{\textbf{y}})$$
τ
x
g
(
-
y
)
of not necessarily radial kernels g. Under certain regularity assumptions on g, we derive bounds for $$\tau _{{\textbf{x}}}g(-{\textbf{y}})$$
τ
x
g
(
-
y
)
by means the Euclidean distance $$\Vert {\textbf{x}}-{\textbf{y}}\Vert $$
‖
x
-
y
‖
and the distance $$d({\textbf{x}},{\textbf{y}})=\min _{\sigma \in G} \Vert {\textbf{x}}-\sigma ({\textbf{y}})\Vert $$
d
(
x
,
y
)
=
min
σ
∈
G
‖
x
-
σ
(
y
)
‖
, where G is the reflection group associated with R. Moreover, we prove that $$\tau $$
τ
does not preserve positivity, that is, there is a non-negative Schwartz class function $$\varphi $$
φ
, such that $$\tau _{{\textbf{x}}}\varphi (-{\textbf{y}})<0$$
τ
x
φ
(
-
y
)
<
0
for some points $${\textbf{x}},{\textbf{y}}\in {\mathbb {R}}^N$$
x
,
y
∈
R
N
.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献