Abstract
AbstractFollowing previous work in the continuous setup, we construct the unitarization of the horocyclic Radon transform on a homogeneous tree X and we show that it intertwines the quasi regular representations of the group of isometries of X on the tree itself and on the space of horocycles.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Analysis
Reference17 articles.
1. Alberti, G.S., Bartolucci, F., De Mari, F., De Vito, E.: Unitarization and inversion formulae for the Radon transform between dual pairs. SIAM J. Math. Anal. 51(6), 4356–4381 (2019)
2. Bartolucci, F., De Mari, F., De Vito, E., Odone, F.: The Radon transform intertwines wavelets and shearlets. Appl. Comput. Harmon. Anal. 47(3), 822–847 (2019)
3. Betori, W., Faraut, J., Pagliacci, M.: An inversion formula for the Radon transform on trees. Math. Z. 201(3), 327–337 (1989)
4. Betori, W., Pagliacci, M.: The Radon transform on trees. Boll. Un. Mat. Ital. B 6(5), 267–277 (1986)
5. Cartier, P.: Harmonic analysis on trees. Proc. Sympos. Pure Math 26, 419–424 (1973)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献