Abstract
AbstractEstimates of best approximations by exponential type analytic functions in Gaussian random variables with respect to the Malliavin derivative in the form of Bernstein–Jackson inequalities with exact constants are established. Formulas for constants are expressed through basic parameters of approximation spaces. The relationship between approximation Gaussian Hilbert spaces and classic Besov spaces are shown.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Analysis
Reference34 articles.
1. Applebaum, D.: Universal Malliavin calculus in Fock and Lévy-Itô spaces. Commun. Stoch. Anal. 3(1), 119–141 (2009)
2. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)
3. Bernd, C.: Inequalities of Bernstein–Jackson-type and the degree of compactness of operators in Banach spaces. Ann. Inst. Fourier (Grenoble) 35(3), 79–118 (1985)
4. Bieberbach, L.: Analytische Fortsetzung. Springer, Berlin (1955)
5. Butzer, P.L., Scherer, K.: Jackson and Bernstain-type inequalities for families of commutative operators in Banach spaces. J. Approx. Theory. 5, 308–342 (1972)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献