On Recovery Guarantees for Angular Synchronization

Author:

Filbir Frank,Krahmer FelixORCID,Melnyk OlehORCID

Abstract

AbstractThe angular synchronization problem of estimating a set of unknown angles from their known noisy pairwise differences arises in various applications. It can be reformulated as an optimization problem on graphs involving the graph Laplacian matrix. We consider a general, weighted version of this problem, where the impact of the noise differs between different pairs of entries and some of the differences are erased completely; this version arises for example in ptychography. We study two common approaches for solving this problem, namely eigenvector relaxation and semidefinite convex relaxation. Although some recovery guarantees are available for both methods, their performance is either unsatisfying or restricted to the unweighted graphs. We close this gap, deriving recovery guarantees for the weighted problem that are completely analogous to the unweighted version.

Funder

Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics,Analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Benign Landscapes of Low-Dimensional Relaxations for Orthogonal Synchronization on General Graphs;SIAM Journal on Optimization;2024-04-11

2. Stable phase retrieval and perturbations of frames;Proceedings of the American Mathematical Society, Series B;2023-09-29

3. Toward fast and provably accurate near-field ptychographic phase retrieval;Sampling Theory, Signal Processing, and Data Analysis;2023-01-30

4. Phase Retrieval for $$L^2([-\pi ,\pi ])$$ via the Provably Accurate and Noise Robust Numerical Inversion of Spectrogram Measurements;Journal of Fourier Analysis and Applications;2022-12-28

5. On connections between Amplitude Flow and Error Reduction for phase retrieval and ptychography;Sampling Theory, Signal Processing, and Data Analysis;2022-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3