Solutions, in Particular Dilute Solutions of Nonelectrolytes: A Review

Author:

Wilhelm EmmerichORCID

Abstract

AbstractThe liquid state is one of the three principal states of matter and arguably the most important one; and liquid mixtures represent a large research field of profound theoretical and practical interest. This topic is of importance in many areas of the applied sciences, such as in chemical engineering, geochemistry, the environmental sciences, biophysics and biomedical technology. First, I will concisely present a review of important concepts from classical thermodynamics of nonelectrolyte solutions; this will be followed by a survey of (semi-)empirical approaches to representing the composition and temperature dependence of selected thermodynamic mixture properties, and finally the focus will be on dilute binary nonelectrolyte solutions where one component, a supercritical solute, is present in much smaller quantity than the other component, called the solvent. Partial molar properties in the limit of infinite dilution (indicated by a superscript ∞) are of particular interest. For instance, activity coefficients (Lewis–Randall (LR) convention) are customarily used to characterize mixing behavior, and infinite-dilution values $$\gamma_{i}^{{{\text{LR,}}\infty }}$$ γ i LR, provide a convenient route for obtaining binary parameters for several popular solution models. When discussing solute (j)—solvent (i) interactions in solutions where the solute is supercritical, the Henry fugacity $$h_{j,i} \left( {T,P} \right)$$ h j , i T , P , also known as Henry’s law (HL) constant, is a measurable thermodynamic key quantity. Its temperature dependence yields information on the partial molar enthalpy change on solution $$\Delta H_{j}^{\infty } \left( {T,P} \right)$$ Δ H j T , P , while its pressure dependence yields information on the partial molar volume $$V_{j}^{{{\text{L,}}\infty }} \left( {T,P} \right)$$ V j L, T , P of solute j in the liquid phase (superscript L). I will clarify issues frequently overlooked, touch upon solubility data reduction and correlation, report a few recent high-precision experimental results on dilute aqueous solutions of supercritical nonelectrolytes, and show the equivalency of results for caloric quantities (e.g. $$\Delta H_{j}^{\infty }$$ Δ H j ) obtained via van ’t Hoff analysis of high-precision solubility data with directly measured calorimetric data.

Funder

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Molecular Biology,Biochemistry,Biophysics

Reference299 articles.

1. Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid Phase Equilibria, 3rd edn. Prentice Hall PTR, New York (1999)

2. Kister, H.Z.: Distillation Operation. McGraw-Hill, New York (1990)

3. Kister, H.Z.: Distillation Design. McGraw-Hill, New York (1992)

4. Kister, H.Z.: Distillation Troubleshooting. McGraw-Hill, New York (2006)

5. McCabe, W.L., Smith, J.C., Harriott, P.: Unit Operations of Chemical Engineering, 7th edn. McGraw-Hill, New York (2006)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3