Extraction of Levulinic Acid from Aqueous Solution Using Trioctylamine at Different Temperatures

Author:

Asadzadeh Behnaz,Saad Mohammed,Uusi-Kyyny Petri,Alopaeus Ville

Abstract

AbstractLevulinic acid (LA), a carboxylic acid with a keto-acid structure, has recently been gaining increasing attention as a promising biorefinery platform chemical due to its potential to be feasible and sustainable. This work focuses on using trioctylamine (TOA) to separate LA from an aqueous solution by liquid–liquid extraction. For that, binodal curves and tie lines were determined at T = (293.15, 313.15, and 333.15) K under atmospheric pressure. The slope of the determined tie lines demonstrates that higher extraction efficiencies are possible with higher acid concentrations. Furthermore, infrared spectroscopy (FT-IR) was applied to better understand the behavior of phase diagrams. This study detected the acid-extractant complex formation between (LA) and (TOA). Finally, the experimental data were successfully correlated with the NRTL model at all the measured temperatures. The obtained parameters were applied using a decanter model.

Funder

Business Finland

Aalto University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3